题目内容

设面积为S的平面四边形的第i条边的边长为ai(i=1,2,3,4),P是该四边形内一点,点P到第i条边的距离记为hi,若
a1
1
=
a2
2
=
a3
3
=
a4
4
=k,则
4
i=1
(ihi=
2S
k
)
,类比上述结论,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),Q是该三棱锥内的一点,点Q到第i个面的距离记为di,若
S1
1
=
S2
2
=
S3
3
=
S4
4
=k,则
4
i=1
(idi)
等于______.
根据三棱锥的体积公式 V=
1
3
Sh

得:
1
3
S1H1+
1
3
S2H2+
1
3
S3H3+
1
3
S4H4=V

即S1H1+2S2H2+3S3H3+4S4H4=3V,
H1+2H2+3H3+4H4=
3V
K

4
i=1
(iHi)=
3V
K

故答案为:
3V
k
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网