题目内容
已知f(x)为R上的偶函数,当x≥0时,f(x)=ln(x+2).(Ⅰ)当x<0时,求f(x)的解析式;
(Ⅱ)当m∈R时,试比较f(m-1)与f(3-m)的大小;
(Ⅲ)求最小的整数m(m≥-2),使得存在实数t,对任意的x∈[m,10],都有f(x+t)≤2ln|x+3|.
【答案】分析:(Ⅰ)当x<0时,-x>0,利用f(x)为R上的偶函数,当x≥0时,f(x)=ln(x+2),可求函数的解析式;
(Ⅱ)当x≥0时,f(x)=ln(x+2)单调递增,而f(x)是偶函数,所以f(x)在(-∞,0)上单调递减,从而可得当m>2时,f(m-1)>f(3-m);当m=2时,f(m-1)=f(3-m);当m<2时,f(m-1)<f(3-m);
(Ⅲ)当x∈R时,f(x)=ln(|x|+2),则|x+t|+2≤(x+3)2对x∈[m,10]恒成立,从而有
对x∈[m,10]恒成立,由此可求适合题意的最小整数m的值.
解答:解:(Ⅰ)当x<0时,-x>0,
∵f(x)为R上的偶函数,当x≥0时,f(x)=ln(x+2)
∴f(x)=f(-x)=ln(-x+2)…(3分)
(Ⅱ)当x≥0时,f(x)=ln(x+2)单调递增,而f(x)是偶函数,所以f(x)在(-∞,0)上单调递减,
所以f(m-1)>f(3-m)
所以|m-1|>|3-m|
所以(m-1)2>(3-m)2
所以m>2…(6分)
所以当m>2时,f(m-1)>f(3-m);当m=2时,f(m-1)=f(3-m);当m<2时,f(m-1)<f(3-m)…(8分)
(Ⅲ)当x∈R时,f(x)=ln(|x|+2),则由f(x+t)≤2ln|x+3|,得ln(|x+t|+2)≤ln(x+3)2,
即|x+t|+2≤(x+3)2对x∈[m,10]恒成立…(12分)
从而有
对x∈[m,10]恒成立,因为m≥-2,
所以
…(14分)
因为存在这样的t,所以-m2-7m-7≤m2+5m+7,即m2+6m+7≥0…(15分)
又m≥-2,所以适合题意的最小整数m=-1…(16分)
点评:本题考查函数单调性与奇偶性的综合,考查函数的解析式,考查恒成立问题,分离参数,确定函数的最值是关键.
(Ⅱ)当x≥0时,f(x)=ln(x+2)单调递增,而f(x)是偶函数,所以f(x)在(-∞,0)上单调递减,从而可得当m>2时,f(m-1)>f(3-m);当m=2时,f(m-1)=f(3-m);当m<2时,f(m-1)<f(3-m);
(Ⅲ)当x∈R时,f(x)=ln(|x|+2),则|x+t|+2≤(x+3)2对x∈[m,10]恒成立,从而有
解答:解:(Ⅰ)当x<0时,-x>0,
∵f(x)为R上的偶函数,当x≥0时,f(x)=ln(x+2)
∴f(x)=f(-x)=ln(-x+2)…(3分)
(Ⅱ)当x≥0时,f(x)=ln(x+2)单调递增,而f(x)是偶函数,所以f(x)在(-∞,0)上单调递减,
所以f(m-1)>f(3-m)
所以|m-1|>|3-m|
所以(m-1)2>(3-m)2
所以m>2…(6分)
所以当m>2时,f(m-1)>f(3-m);当m=2时,f(m-1)=f(3-m);当m<2时,f(m-1)<f(3-m)…(8分)
(Ⅲ)当x∈R时,f(x)=ln(|x|+2),则由f(x+t)≤2ln|x+3|,得ln(|x+t|+2)≤ln(x+3)2,
即|x+t|+2≤(x+3)2对x∈[m,10]恒成立…(12分)
从而有
所以
因为存在这样的t,所以-m2-7m-7≤m2+5m+7,即m2+6m+7≥0…(15分)
又m≥-2,所以适合题意的最小整数m=-1…(16分)
点评:本题考查函数单调性与奇偶性的综合,考查函数的解析式,考查恒成立问题,分离参数,确定函数的最值是关键.
练习册系列答案
相关题目
已知f(x)为R上的减函数,则满足f(
)>f(1)的实数x的取值范围是( )
| 1 |
| x |
| A、(-∞,1) |
| B、(1,+∞) |
| C、(-∞,0)∪(0,1) |
| D、(-∞,0)∪(1,+∞) |
已知 f(x)为R上的可导函数,且f(x)<f'(x)和f(x)>0对于x∈R恒成立,则有( )
| A、f(2)<e2-f(0),f(2010)>e2010-f(0) | B、f(2)>e2-f(0),f(2010)>e2010-f(0) | C、f(2)<e2-f(0),f(2010)<e2010-f(0) | D、f(2)<e2-f(0),f(2010)<e2010-f(0) |