题目内容

如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.
(Ⅰ)求证:平面BCD⊥平面ABC
(Ⅱ)求证:AF∥平面BDE;
(Ⅲ)求四面体B-CDE的体积.

【答案】分析:(Ⅰ)通过面ABC⊥面ACDE,证明DC⊥面ABC,然后利用直线与平面垂直证明平面BCD⊥平面ABC.
(Ⅱ)取BD的中点P,连接EP、FP,证明EAPF,推出AF∥EP,然后利用直线与平面平行的判定定理证明AF∥面BDE.
(Ⅲ)说明四面体B-CDE的高为BA,求出BA,求出S△CDE,然后求解VE-CDE即可.
解答:解:(Ⅰ)证明:∵面ABC⊥面ACDE,面ABC∩面ACDE=AC,CD⊥AC,
∴DC⊥面ABC,(2分)
又∵DC?面BCD,
∴平面BCD⊥平面ABC.(4分)
(Ⅱ)证明:取BD的中点P,连接EP、FP,则PF  DC,
又∵EADC,
∴EAPF,(6分)
∴四边形AFPE是平行四边形,
∴AF∥EP,
又∵EP?面BDE,
∴AF∥面BDE.(8分)
(Ⅲ)解:∵BA⊥AC,面ABC∩面ACDE=AC,
∴BA⊥面ACDE.
∴BA就是四面体B-CDE的高,且BA=2.…(10分)
∵DC=AC=2AE=2,AE∥CD,

∴S△CDE=3-1=2,
.(12分)
点评:本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,直线与平面平行的判定,考查空间想象能力,逻辑推理能力以及计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网