题目内容

已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(a为常数,a≠0,a≠1).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=an2+Sn•an,若数列{bn}为等比数列,求a的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,,数列{cn}的前n项和为Tn.求证:Tn>2n-
【答案】分析:(Ⅰ)由题意知a1=a,Sn=a(Sn-an+1),Sn-1=a(Sn-1-an-1+1),由此可知an=a•an-1,所以an=a•an-1=an
(Ⅱ)由题意知a≠1,,由此可解得
(Ⅲ)证明:由题意知,所以=,由此可知Tn>2n-
解答:解:(Ⅰ)S1=a(S1-a1+1)
∴a1=a,.(1分)
当n≥2时,Sn=a(Sn-an+1),Sn-1=a(Sn-1-an-1+1),
两式相减得:an=a•an-1
(a≠0,n≥2)即{an}是等比数列.
∴an=a•an-1=an;(4分)
(Ⅱ)由(Ⅰ)知a≠1,

若{bn}为等比数列,则有b22=b1b3
而b1=2a2,b2=a3(2a+1),b3=a4(2a2+a+1)(6分)
故[a3(2a+1)]2=2a2•a4(2a2+a+1),解得,(7分)
再将a=代入得bn=(n成立,所以a=.(8分)
(Ⅲ)证明:由(Ⅱ)知
所以==(10分)
所以
Tn=c1+c2++cn+(2-
=(12分)
点评:本题考查数列知识的综合应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网