题目内容
已知数列{an}的各项为正数,前n项和为Sn,若{log2an}是公差为-1的等差数列,且
Sn=
,那么a1的值为( )
| lim |
| n→∞ |
| 5 |
| 3 |
A.
| B.
| C.
| D.
|
∵{log2an}是公差为-1的等差数列
∴log2an=log2a1-n+1
∴an=2(log2a1-n+1)
∴sn=a1(1+
+…+
) =
,
Sn=
∴a1=
.
故选B.
∴log2an=log2a1-n+1
∴an=2(log2a1-n+1)
∴sn=a1(1+
| 1 |
| 2 |
| 1 |
| 2n-1 |
a1[1-(
| ||
1-
|
| lim |
| n→∞ |
| 5 |
| 3 |
∴a1=
| 5 |
| 6 |
故选B.
练习册系列答案
相关题目