题目内容
已知数列{an}的前n项和Sn满足,Sn=2an+(-1)n,n≥1.
(1)求数列{an}的通项公式;
(2)求证:对任意整数m>4,有
+
+…+
<
(m>4).
(1)求数列{an}的通项公式;
(2)求证:对任意整数m>4,有
| 1 |
| a4 |
| 1 |
| a5 |
| 1 |
| am |
| 7 |
| 8 |
分析:(1)由递推式,证明数列{an+
(-1)n}是以a1+
(-1)为首项,公比为2的等比数列,即可求数列{an}的通项公式;
(2)利用放缩法,结合等比数列的求和公式,即可证明结论.
| 2 |
| 3 |
| 2 |
| 3 |
(2)利用放缩法,结合等比数列的求和公式,即可证明结论.
解答:(1)解:an=Sn-Sn-1=2an+(-1)n-2an-1-(-1)n-1化简即an=2an-1+2(-1)n-1
即an+
(-1)n=2[an-1+
(-1)n-1]
由a1=1,故数列{an+
(-1)n}是以a1+
(-1)为首项,公比为2的等比数列.
故an+
(-1)n=
×2n-1即an=
×2n-1-
(-1)n=
[2n-2-(-1)n]
(2)证明:由已知得
+
+…+
=
[
+
+…+
]=
[
+
+
+
+
+…+
]=
(1+
+
+
+
+…)<
(1+
+
+
+
+…)=
[
+
]=
(
+
-
×
)=
-
(
)m-5<
=
<
=
故
+
+…+
<
(m>4)
即an+
| 2 |
| 3 |
| 2 |
| 3 |
由a1=1,故数列{an+
| 2 |
| 3 |
| 2 |
| 3 |
故an+
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
(2)证明:由已知得
| 1 |
| a4 |
| 1 |
| a5 |
| 1 |
| am |
| 3 |
| 2 |
| 1 |
| 22-1 |
| 1 |
| 23+1 |
| 1 |
| 2m-2-(-1)n |
| 3 |
| 2 |
| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 15 |
| 1 |
| 33 |
| 1 |
| 63 |
| 1 |
| 2m-2-(-1)m |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 11 |
| 1 |
| 21 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 10 |
| 1 |
| 20 |
| 1 |
| 2 |
| 4 |
| 3 |
| ||||
1-
|
| 1 |
| 2 |
| 4 |
| 3 |
| 2 |
| 5 |
| 2 |
| 5 |
| 1 |
| 2m-5 |
| 13 |
| 15 |
| 1 |
| 5 |
| 1 |
| 2 |
| 13 |
| 15 |
| 104 |
| 120 |
| 105 |
| 120 |
| 7 |
| 8 |
故
| 1 |
| a4 |
| 1 |
| a5 |
| 1 |
| am |
| 7 |
| 8 |
点评:本题考查等比数列的证明,考查数列与不等式的联系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |