题目内容

(本题满分12分)已知圆关于轴对称,经过抛物线的焦点,且被直线分成两段弧长之比为1∶2,求圆的方程.

【解析】

试题分析:求圆的方程有两种方法①几何法,通过研究圆的性质进而求出圆的基本量.②代数法,即设出圆的方程,用待定系数法求解,利用待定系数法的关键是建立关于a,b,r或D,E,F的方程组.本题采用代数法,直接设出圆的方程,再根据已知条件解出参数.

试题解析:设圆的方程为 抛物线的焦点F(1,0)

① 4分

又直线分圆的两段弧长之比为1:2,可知圆心到直线的距离等于半径的

② 8分

解①②得 故所求圆的方程为 12分

考点:圆的方程及点到直线的距离公式、抛物线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网