题目内容

过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1)、Q(x2,y2)两点,如果x1+x2=6,则|PQ|=(  )
A、9B、8C、7D、6
分析:根据抛物线方程,算出焦点为F(1,0),准线方程为x=-1.利用抛物线的定义,证出|PF|+|QF|=(x1+x2)+2,结合PQ经过焦点F且x1+x2=6,即可得到|PQ|=|PF|+|QF|=8.
解答:解:由抛物线方程为y2=4x,可得2p=4,
p
2
=1,
∴抛物线的焦点为F(1,0),准线方程为x=-1.
根据抛物线的定义,得|PF|=x1+
p
2
=x1+1,|QF|=x2+
p
2
=x2+1,
∴|PF|+|QF|=(x1+1)+(x2+1)=(x1+x2)+2,
又∵PQ经过焦点F,且x1+x2=6,
∴|PQ|=|PF|+|QF|=(x1+x2)+2=6+2=8.
故选:B
点评:本题经过抛物线的焦点的弦PQ,在已知P、Q横坐标之和的情况下求PQ的长.着重考查了抛物线的定义与标准方程的知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网