题目内容

如图,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA1=2,D、E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的垂心G。
(1)求A1B与平面ABD所成角的大小(结果用反三角函数值表示);
(2)求点A1到平面AED的距离。
解:(1)连结BG,则BG是BE在面ABD的射影,即∠EBG是A1B与平面ABD所成的角
设F为AB中点,连结EF、FC
∵D,E分别是CC1,A1B的中点,
又DC⊥平面ABCD,
∴CDEF为矩形,
连接DE,G是△ADB的重心,
∴GE=DF,
在直角三角形EFD中,


于是



∴A1B与平面ABD所成的角是
(2)连结A1D,有


平面
设A1到平面AED的距离为h,


故A1到平面AED的距离为
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网