题目内容
在极坐标系中,曲线ρ=3截直线
【答案】分析:先利用直角坐标与极坐标间的关系,将曲线ρ=3、直线
的极坐标方程所化成直角坐标方程,最后利用直角坐标方程的形式,结合点到直线的距离公式求解即得.
解答:解:由曲线的参数方程ρ=3,化为普通方程为x2+y2=9,
其圆心是O(0,0),半径为3.
由
得:ρcosθ-ρsinθ=
,
化为直角坐标方程为x-y-
=0,
由点到直线的距离公式,得弦心距
.
故l被曲线C所截得的弦长为2
=2
=4
故答案为4
.
点评:本小题主要考查圆的参数方程和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算被圆所截得的弦长等基本方法.
解答:解:由曲线的参数方程ρ=3,化为普通方程为x2+y2=9,
其圆心是O(0,0),半径为3.
由
化为直角坐标方程为x-y-
由点到直线的距离公式,得弦心距
故l被曲线C所截得的弦长为2
故答案为4
点评:本小题主要考查圆的参数方程和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算被圆所截得的弦长等基本方法.
练习册系列答案
相关题目