题目内容
已知函数f(x)=2sin(
x-
),x∈R.
(1)求f(
)的值;
(2)设α,β∈[0,
],f(3α+
)=
,f(3β+2π)=
,求cos
的值.
| 1 |
| 3 |
| π |
| 6 |
(1)求f(
| 5π |
| 4 |
(2)设α,β∈[0,
| π |
| 2 |
| π |
| 2 |
| 10 |
| 13 |
| 6 |
| 5 |
| α+β |
| 2 |
分析:(1)把
代入f(x)即可得出;
(2)把3α+
,3β+2π分别代入f(x)化简整理再利用平方关系,再利用两角和的余弦公式、倍角公式即可得出.
| 5π |
| 4 |
(2)把3α+
| π |
| 2 |
解答:解:(1)f(
)=2sin(
×
-
)=2sin
=
.
(2)f(3α+
)=2sin[
(3α+
)-
]=2sinα=
,∴sinα=
.∵α∈[0,
],∴cosα=
.
f(3β+2π)=2sin[
(3β+2π)-
]=2sin(β+
)=2cosβ=
,解得cosβ=
.∵β∈[0,
],∴sinβ=
.
∴cos(α+β)=cosαcosβ-sinαsinβ=
×
-
×
=
.
∵α,β∈[0,
],∴
∈[0,
],∴cos
>0,
∴cos
=
=
.
| 5π |
| 4 |
| 1 |
| 3 |
| 5π |
| 4 |
| π |
| 6 |
| π |
| 4 |
| 2 |
(2)f(3α+
| π |
| 2 |
| 1 |
| 3 |
| π |
| 2 |
| π |
| 6 |
| 10 |
| 13 |
| 5 |
| 13 |
| π |
| 2 |
| 12 |
| 13 |
f(3β+2π)=2sin[
| 1 |
| 3 |
| π |
| 6 |
| π |
| 2 |
| 6 |
| 5 |
| 3 |
| 5 |
| π |
| 2 |
| 4 |
| 5 |
∴cos(α+β)=cosαcosβ-sinαsinβ=
| 12 |
| 13 |
| 3 |
| 5 |
| 5 |
| 13 |
| 4 |
| 5 |
| 16 |
| 65 |
∵α,β∈[0,
| π |
| 2 |
| α+β |
| 2 |
| π |
| 2 |
| α+β |
| 2 |
∴cos
| α+β |
| 2 |
|
9
| ||
| 130 |
点评:本题综合考查了三角函数的平方关系、两角和的余弦公式、倍角公式等基础知识与基本方法,属于基础题.
练习册系列答案
相关题目