题目内容
化简求值
①tan70°cos10°(
tan20°-1)
②已知sin(α+
)+sinα=-
,(-
<α<0),求cosα的值.
①tan70°cos10°(
| 3 |
②已知sin(α+
| π |
| 3 |
4
| ||
| 5 |
| π |
| 2 |
①tan70°cos10°(
tan20°-1)
=cot20°cos10°(
-1)
=cot20°cos10°(
)
=
×cos10°×(
)
=
×cos10°×(
)
=
×(-
)
=-1
②∵sin(α+
)+sinα=-
,
∴
sinα+
cosα+sinα=-
即
sin(α+
)=-
∴sin(α+
)=-
,又∵-
<α<0,
∴cos(α+
)=
∴cosα=cos(α+
-
)=
cos(α+
)+
sin(α+
)=
×
+
×(-
)=
| 3 |
=cot20°cos10°(
| ||
| cos20° |
=cot20°cos10°(
| ||
| cos20° |
=
| cos20° |
| sin20° |
2(
| ||||||
| cos20° |
=
| cos20° |
| sin20° |
| 2sin(20°-30°) |
| cos20° |
=
| cos20° |
| sin20° |
| sin20° |
| cos20° |
=-1
②∵sin(α+
| π |
| 3 |
4
| ||
| 5 |
∴
| 1 |
| 2 |
| ||
| 2 |
4
| ||
| 5 |
即
| 3 |
| π |
| 6 |
4
| ||
| 5 |
∴sin(α+
| π |
| 6 |
| 4 |
| 5 |
| π |
| 2 |
∴cos(α+
| π |
| 6 |
| 3 |
| 5 |
∴cosα=cos(α+
| π |
| 6 |
| π |
| 6 |
| ||
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
| 3 |
| 5 |
| 1 |
| 2 |
| 4 |
| 5 |
3
| ||
| 10 |
练习册系列答案
相关题目