题目内容

已知常数a>0,函数f(x)=
x3+
3a4
x
,|x|≥
a
2
49
4
a2x,|x|<
a
2

(1)求f(x)的单调递增区间;
(2)若0<a≤2,求f(x)在区间[1,2]上的最小值g(a);
(3)是否存在常数t,使对于任意x∈(
a
2
,2t-
a
2
)(t>
a
2
)
时,f(x)f(2t-x)+f2(t)≥[f(x)+f(2t-x)]f(t)恒成立,若存在,求出t的值;若不存在,说明理由.
(1)当|x|<
a
2
时,f(x)=
49
4
a2x
为增函数. …(1分)
|x|≥
a
2
时,f'(x)=3x2-
3a4
x2

令f'(x)>0,得x>a或x<-a.…(3分)
∴f(x)的增区间为(-∞,-a),(-
a
2
a
2
)
和(a,+∞).…(4分)
(2)函数的图象如图,由图可知,

精英家教网

①当1<a<2时,
a
2
<1<a
,f(x)在区间[1,a]上递减,在[a,2]上递增,最小值为f(a)=4a3;…(6分)
②当0<a≤1时,f(x)在区间[1,2]为增函数,最小值为f(1)=1+3a4;…(8分)
③当a=2时,f(x)在区间[1,2]为减函数,最小值为f(a)=4a3; …(9分)
综上,f(x)最小值g(a)=
1+3a4,0<a≤1
4a3,1<a≤2
.  …(10分)
(3)由f(x)f(2t-x)+f2(t)≥[f(x)+f(2t-x)]f(t),
可得[f(t)-f(x)][f(t)-f(2t-x)]≥0,…(12分)
f(t)≤f(x)
f(t)≤f(2t-x)
f(t)≥f(x)
f(t)≥f(2t-x)
成立,所以t为极小值点,或t为极大值点.
x∈(
a
2
,2t-
a
2
)
时,f(x)没有极大值,所以t为极小值点,即t=a…(16分)
(若只给出t=a,不说明理由,得1分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网