题目内容
已知函数f(x)=Asin(3x+ρ)(A>0,x∈(-∞,+∞),0<ρ<π)在x=
时取得最大值4.
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若f(
α+
)=
,求sinα.
| π |
| 12 |
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若f(
| 2 |
| 3 |
| π |
| 12 |
| 12 |
| 5 |
(1)由周期计算公式,可得T=
(2)由f(x)的最大值是4知,A=4
f(x)max=f(
)=4sin(3×
+ρ)=4,即sin(
+ρ)=1
∵0<ρ<π,∴
<
+ρ<
∴
+ρ=
,∴ρ=
∴f(x)=4sin(3x+
)
(3)f(
α+
)=4sin[3(
α+
)+
]=
,即sin[3(
α+
)+
]=
sin(2α+
)=
,cos2α=
,1-2sin2α=
,sin2α=
,sinα=±
.
| 2π |
| 3 |
(2)由f(x)的最大值是4知,A=4
f(x)max=f(
| π |
| 12 |
| π |
| 12 |
| π |
| 4 |
∵0<ρ<π,∴
| π |
| 4 |
| π |
| 4 |
| 5π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
∴f(x)=4sin(3x+
| π |
| 4 |
(3)f(
| 2 |
| 3 |
| π |
| 12 |
| 2 |
| 3 |
| π |
| 12 |
| π |
| 4 |
| 12 |
| 5 |
| 2 |
| 3 |
| π |
| 12 |
| π |
| 4 |
| 3 |
| 5 |
sin(2α+
| π |
| 2 |
| 3 |
| 5 |
| 3 |
| 5 |
| 3 |
| 5 |
| 1 |
| 5 |
| ||
| 5 |
练习册系列答案
相关题目