题目内容
在?ABCD中,A(1,1),| AB |
(1)若
| AD |
(2)当|
| AB |
| AD |
分析:(1)设出C的坐标,
=
+
,以及
=
+
求出点C的坐标,
(2)设出P的坐标,当|
|=|
|时?ABCD为菱形,
⊥
,表示
,
,即可求点P的轨迹.
| AC |
| AD |
| AB |
| OC |
| OA |
| AC |
(2)设出P的坐标,当|
| AB |
| AD |
| BP |
| AC |
| BP |
| AC |
解答:解:(1)设点C的坐标为(x0,y0),
又
=
+
=(3,5)+(6,0)=(9,5),
即(x0-1,y0-1)=(9,5),
∴x0=10,y0=6,即点C(10,6).
(2)设P(x,y),则
=
-
=(x-1,y-1)-(6,0)
=(x-7,y-1),
=
+
=
+3
=
+3(
-
)=3
-
=(3(x-1),3(y-1))-(6,0)
=(3x-9,3y-3).
∵|
|=|
|,∴?ABCD为菱形,∴
⊥
,
∴(x-7,y-1)•(3x-9,3y-3)=0,
即(x-7)(3x-9)+(y-1)(3y-3)=0.
∴x2+y2-10x-2y+22=0(y≠1).
即(x-5)2+(y-1)2=4(y≠1).
故点P的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y=1的两个交点.
又
| AC |
| AD |
| AB |
即(x0-1,y0-1)=(9,5),
∴x0=10,y0=6,即点C(10,6).
(2)设P(x,y),则
| BP |
| AP |
| AB |
=(x-1,y-1)-(6,0)
=(x-7,y-1),
| AC |
| AM |
| MC |
| 1 |
| 2 |
| AB |
| MP |
=
| 1 |
| 2 |
| AB |
| AP |
| 1 |
| 2 |
| AB |
| AP |
| AB |
=(3(x-1),3(y-1))-(6,0)
=(3x-9,3y-3).
∵|
| AB |
| AD |
| BP |
| AC |
∴(x-7,y-1)•(3x-9,3y-3)=0,
即(x-7)(3x-9)+(y-1)(3y-3)=0.
∴x2+y2-10x-2y+22=0(y≠1).
即(x-5)2+(y-1)2=4(y≠1).
故点P的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y=1的两个交点.
点评:本题考查平面向量坐标运算,求轨迹方程的方法,是难题.
练习册系列答案
相关题目