题目内容
【题目】已知函数
.
(1)证明:当
时,函数
在
上是单调函数;
(2)当
时,
恒成立,求实数
的取值范围.
【答案】 (1)见解析;(2)
.
【解析】试题分析:
(1)由题意得
,再令
,利用导数可得
在
取得最小值,且
,于是
,从而得到
在
上是单调递增函数.(2)由题意分离参数可得当
时,
恒成立.令
,利用导数可得到当
时,
取得最小值,且
,从而可得
,即为所求的范围.
试题解析:
(1)∵
,
∴
,
令
,
则
,
则当
时,
,
单调递减;
当
时,
,
单调递增.
∴函数
在
取得最小值,且最小值为
,
∴
在
上恒成立,
∴
在
上是单调递增函数.
(2)由题意得当
时,
恒成立,
∴当
时,
恒成立.
令
,
则
,
令
,
则
.
∴
时,
单调递增,
∴
,即
.
∴当
时,
,
单调递减;
当
时,
,
单调递增.
∴当
时,
取得最小值,且
,
∴
.
故实数
的取值范围为
.
练习册系列答案
相关题目
【题目】为考察某种疫苗预防疾病的效果,进行动物试验,得到统计数据如下:现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为
.
未发病 | 发病 | 总计 | |
未注射疫苗 | 20 | x | A |
注射疫苗 | 40 | y | B |
总计 | 60 | 40 | 100 |
(1)求2×2列联表中的数据x,y,A,B的值.
(2)能否在犯错误的概率不超过0.01的前提下认为疫苗有效?
附:![]()
临界值表:
P(K2≥k0) | 0.05 | 0.01 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |