题目内容
设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,….
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式;
(3)设cn=n (3-bn),求数列{cn}的前n项和为Tn.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式;
(3)设cn=n (3-bn),求数列{cn}的前n项和为Tn.
(1)因为n=1时,a1+S1=a1+a1=2,所以a1=1.
因为Sn=2-an,即an+Sn=2,所以an+1+Sn+1=2.
两式相减:an+1-an+Sn+1-Sn=0,即an+1-an+an+1=0,故有2an+1=an.
因为an≠0,所以
=
( n∈N*).
所以数列{an}是首项a1=1,公比为
的等比数列,an=(
)n-1( n∈N*).
(2)因为bn+1=bn+an( n=1,2,3,…),所以bn+1-bn=(
)n-1.从而有b2-b1=1,b3-b2=
,b4-b3=(
)2,…,bn-bn-1=(
)n-2( n=2,3,…).
将这n-1个等式相加,得bn-b1=1+
+(
)2+…+(
)n-2=
=2-2(
)n-1.
又因为b1=1,所以bn=3-2(
)n-1( n=1,2,3,…).
(3)因为cn=n (3-bn)=2n(
)n-1,
所以Tn=2[(
)0+2(
)+3(
)2+…+(n-1)(
)n-2+n(
)n-1]. ①
Tn=2[(
)1+2(
)2+3(
)3+…+(n-1)(
)n-1+n(
)n]. ②
①-②,得
Tn=2[(
)0+(
)+(
)2+…+(
)n-1]-2n(
)n.
故Tn=4
-4n(
)n=8-
-4n(
)n=8-(8+4n)
( n=1,2,3,…).
因为Sn=2-an,即an+Sn=2,所以an+1+Sn+1=2.
两式相减:an+1-an+Sn+1-Sn=0,即an+1-an+an+1=0,故有2an+1=an.
因为an≠0,所以
| an+1 |
| an |
| 1 |
| 2 |
所以数列{an}是首项a1=1,公比为
| 1 |
| 2 |
| 1 |
| 2 |
(2)因为bn+1=bn+an( n=1,2,3,…),所以bn+1-bn=(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
将这n-1个等式相加,得bn-b1=1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
1-(
| ||
1-
|
| 1 |
| 2 |
又因为b1=1,所以bn=3-2(
| 1 |
| 2 |
(3)因为cn=n (3-bn)=2n(
| 1 |
| 2 |
所以Tn=2[(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故Tn=4
1-(
| ||
1-
|
| 1 |
| 2 |
| 8 |
| 2n |
| 1 |
| 2 |
| 1 |
| 2n |
练习册系列答案
相关题目