题目内容
若数列{an}满足a1=
,a1+a2+…+an=n2an,则数列{an}的前60项和为
.
| 1 |
| 2 |
| 60 |
| 61 |
| 60 |
| 61 |
分析:根据n≥2时an=Sn-Sn-1,算出(n2-1)an=(n-1)2an-1,得到
=
.用累乘的方法算出当n≥2时,an=
,且n=1时也符合条件.由此可得{an}的前n项和为和为Sn的表达式,从而得到{an}的前60项和的值.
| an |
| an-1 |
| n-1 |
| n+1 |
| 1 |
| n(n+1) |
解答:解:∵数列{an}的前n项的和Sn=a1+a2+…+an,∴Sn=n2an,
当n≥2时,Sn-1=(n-1)2an-1,两式相减得an=n2an-(n-1)2an-1,
即(n2-1)an=(n-1)2an-1,故
=
,
∴
=
×
×
×…×
=
×
×…×
×
=
结合a1=
,可得an=
当n=1时,也满足上式,故an=
对任意n∈N+成立,
可得an=
=
-
,
因此,数列数列{an}的前n项和为Sn=(1-
)+(
-
)+(
-
)+…+(
-
)=1-
=
.
∴{an}的前60项和为
故答案为:
当n≥2时,Sn-1=(n-1)2an-1,两式相减得an=n2an-(n-1)2an-1,
即(n2-1)an=(n-1)2an-1,故
| an |
| an-1 |
| n-1 |
| n+1 |
∴
| an |
| a1 |
| a2 |
| a1 |
| a3 |
| a2 |
| a4 |
| a3 |
| an |
| an-1 |
| 1 |
| 3 |
| 2 |
| 4 |
| n-2 |
| n |
| n-1 |
| n+1 |
| 2 |
| n(n+1) |
结合a1=
| 1 |
| 2 |
| 1 |
| n(n+1) |
当n=1时,也满足上式,故an=
| 1 |
| n(n+1) |
可得an=
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
因此,数列数列{an}的前n项和为Sn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
∴{an}的前60项和为
| 60 |
| 61 |
故答案为:
| 60 |
| 61 |
点评:本题给出数列{an}的前项和Sn与an的表达式,求{an}的前60项和.着重考查了等差数列的通项公式、数列前n项和Sn与an的关系等知识,属于中档题.
练习册系列答案
相关题目