题目内容
数列{an}中,a1=2,an+1=| an |
| 2 |
| 1 |
| an |
| 2 |
| 2 |
| 1 |
| n |
分析:由题设知an>0,当n=1时,a1=2<
+1;当n=2时,a2=0.5a1+
=
<
+
.假设当n=k(k∈N)时,ak<
+
,那么当n=k+1时,ak+1=0.5ak+
,ak+1≤0.5(
+
) +
.再用作商法比较0.5(
+
) +
和
+
的大小.从而证明出,
<an<
+
.
| 2 |
| 1 |
| a1 |
| 3 |
| 2 |
| 2 |
| 1 |
| 2 |
| 2 |
| 1 |
| k |
| 1 |
| ak |
| 2 |
| 1 |
| k |
| 1 | ||||
|
| 2 |
| 1 |
| k |
| 1 | ||||
|
| 2 |
| 1 |
| k+1 |
| 2 |
| 2 |
| 1 |
| n |
解答:证明:∵a1=2,an+1=0.5an+
,∴an>0,
∵0.5an2-an+1an+1=0,由△=an+12-2≥0,得an+1≤-
(舍去)或an+1≥
.
当n=1时,a1=2<
+1;
当n=2时,a2=0.5a1+
=
<
+
.
假设当n=k(k∈N)时,ak<
+
,
那么当n=k+1时,ak+1=0.5ak+
,
∵0.5ak+
≥
,当且仅当ak=
时等号成立,
≤ak<
+
,
∴ak+1≤0.5(
+
) +
.
面用作商法比较0.5(
+
) +
和
+
的大小.
∵
=
=
<1,
∴0.5(
+
) +
<
+
,
∴ak+1<
+
,
即当n=k+1时,an<
+
成立.
∴对于任意n∈N,
<an<
+
均成立.
| 1 |
| an |
∵0.5an2-an+1an+1=0,由△=an+12-2≥0,得an+1≤-
| 2 |
| 2 |
当n=1时,a1=2<
| 2 |
当n=2时,a2=0.5a1+
| 1 |
| a1 |
| 3 |
| 2 |
| 2 |
| 1 |
| 2 |
假设当n=k(k∈N)时,ak<
| 2 |
| 1 |
| k |
那么当n=k+1时,ak+1=0.5ak+
| 1 |
| ak |
∵0.5ak+
| 1 |
| ak |
| 2 |
| 2 |
| 2 |
| 2 |
| 1 |
| k |
∴ak+1≤0.5(
| 2 |
| 1 |
| k |
| 1 | ||||
|
面用作商法比较0.5(
| 2 |
| 1 |
| k |
| 1 | ||||
|
| 2 |
| 1 |
| k+1 |
∵
0.5(
| ||||||||||
|
| ||||||
|
4k3+(4+2
| ||||
4k3+4(1+
|
∴0.5(
| 2 |
| 1 |
| k |
| 1 | ||||
|
| 2 |
| 1 |
| k+1 |
∴ak+1<
| 2 |
| 1 |
| k+1 |
即当n=k+1时,an<
| 2 |
| 1 |
| n |
∴对于任意n∈N,
| 2 |
| 2 |
| 1 |
| n |
点评:本题考查数列的极限及其应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|