题目内容

在△ABC中,若2cosB•sinA=sinC,则△ABC的形状一定是( )
A.等腰直角三角形
B.直角三角形
C.等腰三角形
D.等边三角形
【答案】分析:在△ABC中,总有A+B+C=π,利用此关系式将题中:“2cosB•sinA=sinC,”化去角C,最后得到关系另外两个角的关系,从而解决问题.
解答:解析:∵2cosB•sinA=sinC=sin(A+B)⇒sin(A-B)=0,
又B、A为三角形的内角,
∴A=B.
答案:C
点评:本题主要考查三角函数的两角和与差的正弦函数,属于基础题,在判定三角形形状时,一般考虑两个方向进行变形,一个方向是边,走代数变形之路,另一个方向是角,走三角变换之路.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网