题目内容
(2013•虹口区一模)在等比数列{an}中,已知a1a2=32,a3a4=2,则
(a1+a2+…+an)=
| lim | n→∞ |
±16
±16
.分析:设出等比数列{an}的首项和公比,然后由a1a2=32,a3a4=2联立方程组,求出首项和公比后可得等比数列的前n项和,最后可求前n项和的极限值.
解答:解:设等比数列{an}的首项为a1,公比为q,由a1a2=32,a3a4=2,得:
,
②÷①得:q4=
=
=(
)4,所以,q=±
.
当q=
时,代入①得,a1=±8.
当q=-
时,不合题意(舍).
所以,当a1=8,q=
时,an=a1qn-1=8×(
)n-1.
则
(a1+a2+a3+…+an)=
(8+8×
+8×
+…+8×(
)n-1)
=
=
16×(1-(
)n)=16.
当a1=-8,q=-
时,an=a1qn-1=-8×(
)n-1.
则
(a1+a2+a3+…+an)=
-(8+8×
+8×
+…+8×(
)n-1)
=-
=-
16×(1-(
)n)=-16.
所以,
(a1+a2+…+an)=±16.
故答案为±16.
|
②÷①得:q4=
| 2 |
| 32 |
| 1 |
| 16 |
| 1 |
| 2 |
| 1 |
| 2 |
当q=
| 1 |
| 2 |
当q=-
| 1 |
| 2 |
所以,当a1=8,q=
| 1 |
| 2 |
| 1 |
| 2 |
则
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
=
| lim |
| n→∞ |
8×(1-(
| ||
1-
|
| lim |
| n→∞ |
| 1 |
| 2 |
当a1=-8,q=-
| 1 |
| 2 |
| 1 |
| 2 |
则
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
=-
| lim |
| n→∞ |
8×(1-(
| ||
1-
|
| lim |
| n→∞ |
| 1 |
| 2 |
所以,
| lim |
| n→∞ |
故答案为±16.
点评:本题考查了等比数列的通项公式,考查了等比数列前n项和的求法,考查了分类讨论的数学思想,训练了数列极限的求法,此题是中档题.
练习册系列答案
相关题目