题目内容
已知函数f(x)=2sin(2x+
).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[-
,
]上的最大值和最小值.
| π |
| 6 |
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[-
| π |
| 6 |
| π |
| 4 |
分析:(1)由公式易得f(x)的最小正周期;
(2)由题目给出的x的范围,由不等式的性质逐步得到2x+
的范围,进而由此范围内三角函数的单调性求解最值.
(2)由题目给出的x的范围,由不等式的性质逐步得到2x+
| π |
| 6 |
解答:解:(1)由题意可得f(x)的最小正周期T=
=π;
(2)因为-
≤x≤
,所以-
≤2x≤
,故-
≤2x+
≤
,
故当2x+
=
,即x=
时,f(x)取得最大值2,
当2x+
=-
,即x=-
时,f(x)取得最小值-1
| 2π |
| 2 |
(2)因为-
| π |
| 6 |
| π |
| 4 |
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
故当2x+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
当2x+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
点评:本题考查三角函数的最值及周期的求法,属基础题.
练习册系列答案
相关题目