题目内容
数列{an}中,an+1=
,n∈N*.
(I)若a1=
,设bn=log
,求证数列{bn}是等比数列,并求出数列{an}的通项公式;
(II)若a1>2,n≥2,n∈N,用数学归纳法证明:2<an<2+
.
| an2 |
| 2an-2 |
(I)若a1=
| 9 |
| 4 |
| 1 |
| 3 |
| an-2 |
| an |
(II)若a1>2,n≥2,n∈N,用数学归纳法证明:2<an<2+
| a1-2 |
| 2n-1 |
(I)证明:
∵bn+1=log
=log
=log
(
)2=2log
(
)=2bn,
(2分)
∵b1=log
=2,∴数列{bn}是首项为2,公比为2的等比数列,(4分)
∴bn=2n,即log
=2n,得
=(
)2n,所以an=
.(6分)
(II)证明:(i)当n=2时,∵a1>2,
∴a2-2=
-2=
>0,
∴a2-2-
=
-
=
<0,
∴2<a2<2+
,不等式成立;(8分)
(ii)假设当n=k(k≥2)时,2<ak<2+
成立,
那么,当n=k+1时,去证明2<ak+1<2+
∵ak+1-2=
-2=
>0,
∴ak+1>2;
∵ak+1-2-
=
-
<
-
=
-
,
-
<
-
=0
∴ak+1<2+
;
∴2<ak+1<2+
,
所以n=k+1不等式也成立,
由(i)(ii)可知,不等式成立.(12分)
∵bn+1=log
| 1 |
| 3 |
| an+1-2 |
| an+1 |
| 1 |
| 3 |
| ||||
|
| 1 |
| 3 |
| an-2 |
| an |
| 1 |
| 3 |
| an-2 |
| an |
(2分)
∵b1=log
| 1 |
| 3 |
| a1-2 |
| a1 |
∴bn=2n,即log
| 1 |
| 3 |
| an-2 |
| an |
| an-2 |
| an |
| 1 |
| 3 |
| 2 | ||
1-(
|
(II)证明:(i)当n=2时,∵a1>2,
∴a2-2=
| ||
| 2a1-2 |
| (a1-2)2 |
| 2a1-2 |
∴a2-2-
| a1-2 |
| 2 |
| (a1-2)2 |
| 2a1-2 |
| a1-2 |
| 2 |
| 2-a1 |
| 2(a1-1) |
∴2<a2<2+
| a1-2 |
| 21 |
(ii)假设当n=k(k≥2)时,2<ak<2+
| a1-2 |
| 2k-1 |
那么,当n=k+1时,去证明2<ak+1<2+
| a1-2 |
| 2k |
∵ak+1-2=
| ak |
| 2ak-2 |
| (ak-2)2 |
| 2(ak-1) |
∴ak+1>2;
∵ak+1-2-
| a1-2 |
| 2k |
| (ak-2)2 |
| 2(ak-1) |
| a1-2 |
| 2k |
| (ak-2)2 |
| 2(ak-2) |
| a1-2 |
| 2k |
| ak-2 |
| 2 |
| a1-2 |
| 2k |
| ak-2 |
| 2 |
| a1-2 |
| 2k |
2+
| ||
| 2 |
| a1-2 |
| 2k |
∴ak+1<2+
| a1-2 |
| 2k |
∴2<ak+1<2+
| a1-2 |
| 2k |
所以n=k+1不等式也成立,
由(i)(ii)可知,不等式成立.(12分)
练习册系列答案
相关题目