题目内容
在空间四边形ABCD中,M,N分别是AB,CD的中点,设BC+AD=2a,则MN与a的大小关系是( )A.MN>a B.MN=a C.MN<a D.不能确定
解析:如图,
![]()
取AC中点P,则MP![]()
BC,NP
AD,且MP+NP=
(BC+AD)=a>MN,故C正确.
答案:C
练习册系列答案
相关题目
在空间四边形ABCD中,连接AC、BD,若△BCD是正三角形,且E为其中心,则
+
-
-
化简后的结果为( )
| AB |
| 1 |
| 2 |
| BC |
| 3 |
| 2 |
| DE |
| AD |
A、
| ||
B、2
| ||
C、
| ||
D、2
|
在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.若AC=BD=a,若四边形EFGH的面积为
a2,则异面直线AC与BD所成的角为( )
| ||
| 8 |
| A、30° | B、60° |
| C、120° | D、60°或120° |