题目内容
如图三棱柱ABC-A1B1C1中,E,F分别是AB、AC的中点,平面EFC1B1将三棱柱分成体积为V1,V2(左为V1,右为V2)两部分,则V1:V2=
- A.7:5
- B.4:3
- C.3:1
- D.2:1
A
分析:设AEF面积为s1,ABC和A1B1C1的面积为s,三棱柱高位h;VAEF-A1B1C1=V1;VBCFE-B1C1=V2;总体积为:V,根据棱台体积公式求V1;V2=V-V1以及面积关系,求出体积之比.
解答:由题:设AEF面积为s1,ABC和A1B1C1的面积为s,三棱柱高位h;VAEF-A1B1C1=V1;
VBCFE-B1C1=V2;总体积为:V
计算体积:
V1=
h(s1+s+
)①
V=sh ②
V2=V-V1③
由题意可知,s1=
④
根据①②③④解方程可得:V1=
sh,V2=
sh;则 
故选A.
点评:本题考查的知识点是棱柱的体积,棱台的体积,组合体的体积,其中分析出面EB'C'F将三棱柱分成一个棱台(体积为V1)和一个不规则几何体,(体积为V2),是解答本题的关键.
分析:设AEF面积为s1,ABC和A1B1C1的面积为s,三棱柱高位h;VAEF-A1B1C1=V1;VBCFE-B1C1=V2;总体积为:V,根据棱台体积公式求V1;V2=V-V1以及面积关系,求出体积之比.
解答:由题:设AEF面积为s1,ABC和A1B1C1的面积为s,三棱柱高位h;VAEF-A1B1C1=V1;
VBCFE-B1C1=V2;总体积为:V
计算体积:
V1=
V=sh ②
V2=V-V1③
由题意可知,s1=
根据①②③④解方程可得:V1=
故选A.
点评:本题考查的知识点是棱柱的体积,棱台的体积,组合体的体积,其中分析出面EB'C'F将三棱柱分成一个棱台(体积为V1)和一个不规则几何体,(体积为V2),是解答本题的关键.
练习册系列答案
相关题目
| A、7:5 | B、4:3 | C、3:1 | D、2:1 |