题目内容

设正四面体A-BCD中,E、F分别为AC、AD的中点,则△BEF在该四面体的面ADC上的射影可能是(  )
分析:由于是正四面体,不难得到B在ADC上的射影是三角形ADC的中心,可得到BEF在ADC上的射影,即可推出正确选项.
解答:解:由于几何体是正四面体,
所以B在ADC上的射影是它的中心,可得到三角形BEF在ADC上的射影,
因为F在AD上,E在AC上,
所以考察选项,只有A正确.
故选A.
点评:本题考查射影问题,明确几何体的结构特征,是解好这类问题的关键,考查空间想象能力,逻辑思维能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网