题目内容
命题:?x∈[0,
],使3cos2
+
sin
cos
<a+
成立,则实数a的取值范围是( )
| π |
| 3 |
| x |
| 2 |
| 3 |
| x |
| 2 |
| x |
| 2 |
| 3 |
| 2 |
分析:利用两角和与差的正弦将3cos2
+
sin
cos
<a+
转化为a>
sin(x+
),从而可求得答案.
| x |
| 2 |
| 3 |
| x |
| 2 |
| x |
| 2 |
| 3 |
| 2 |
| 3 |
| π |
| 3 |
解答:解:∵3cos2
+
sin
cos
<a+
,
∴3×
+
sinx<a+
,
∴a>
sinx+
cosx=
sin(x+
),
∵x∈[0,
],
∴
≤x+
≤
,
∴
≤sin(x+
)≤1,
∴
≤
sin(x+
)≤
,
∴a>
.
故选D.
| x |
| 2 |
| 3 |
| x |
| 2 |
| x |
| 2 |
| 3 |
| 2 |
∴3×
| 1+cosx |
| 2 |
| ||
| 2 |
| 3 |
| 2 |
∴a>
| ||
| 2 |
| 3 |
| 2 |
| 3 |
| π |
| 3 |
∵x∈[0,
| π |
| 3 |
∴
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
∴
| ||
| 2 |
| π |
| 3 |
∴
| 3 |
| 2 |
| 3 |
| π |
| 3 |
| 3 |
∴a>
| 3 |
故选D.
点评:本题考查两角和与差的正弦函数,考查二倍角的正弦与余弦,考查恒成立问题,属于中档题.
练习册系列答案
相关题目