题目内容

已知函数f(x)=x3-x2-3x+,直线l:9x+2y+c=0.

(1)求证:直线l与函数y=f(x)的图象不相切;

(2)若当x∈[-2,2]时,函数y=f(x)的图象在直线l的下方,求c的范围.

(1)证法一:f′(x)=x2-2x-3=(x-1)2-4≥-4.                                                            ?

根据导数的几何意义知,函数y=f(x)的图象上任意一点处切线的斜率均不小于-4.       ?

而直线l:9x+2y+c=0的斜率为-<-4,?

所以直线l与函数y=f(x)的图象不相切.                                                                    ?

证法二:f′(x)=x2-2x-3.                                                                                         ?

假设直线l:9x+2y+c=0与函数y=f(x)的图象相切,?

x2-2x-3=-有实数解,即x2-2x+=0有实数解.                                             ?

因为Δ=-2<0,方程x2-2x+=0无实数解,?

所以直线l与函数y=f(x)的图象不相切.                                                                    ?

(2)解:当x∈[-2,2]时,函数y=f(x)的图象在直线l的下方,即x3-x2-3x+-(-x-)<0对一切x∈[-2,2]都成立,                                                                               9分?

c<-x3+2x2-3x-对一切x∈[-2,2]都成立.                                                   

g(x)=-x3+2x2-3x-.?

因为g′(x)=-2x2-4x-3=-2(x-1)2-1<0,?

所以g(x)在[-2,2]上单调递减.                                                                       ?

所以当x∈[-2,2]时,[g(x)]Min=g(2)=-×23+2×22-3×2-=-6.               ?

所以c<-6,所以c的范围是(-∞,-6).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网