题目内容
已知正项数列{an}的前n和为Sn,且| Sn |
| 1 |
| 4 |
(1)求证:数列{an}是等差数列;
(2)若bn=
| an |
| 2n |
分析:(1)要证明数列{an}为等差数列,需证明an-an-1=d,由已知条件可得Sn=
•(an+1) 2, 利用an=Sn-Sn-1,(n≥2)
(2)由(1)可得an=2n-1,bn=
用错位相减求和
| 1 |
| 4 |
(2)由(1)可得an=2n-1,bn=
| 2n-1 |
| 2n |
解答:解:(1)由题意可知,Sn=
• (an+1) 2
当n≥2,an=Sn-Sn-1=
-
整理可得(an-1)2=(an-1+1)2=(an-1+1)2
∵an>0∴an-an-1=2
n=1,由S1=
解得a1=1
数列an以1为首项,以2为公差的等差数列
(2)由(1)可得an=1+2(n-1)=2n-1
∴bn=
=
Tn=
+
+…+
①
T n=
+
+…+
+
②
①-②得
Tn =
+2(
+
+…+
)-
=
-
-
∴Tn=3-
| 1 |
| 4 |
当n≥2,an=Sn-Sn-1=
| (an+1)2 |
| 4 |
| (an-1+1)2 |
| 4 |
整理可得(an-1)2=(an-1+1)2=(an-1+1)2
∵an>0∴an-an-1=2
n=1,由S1=
| (a1+ 1) 2 |
| 4 |
数列an以1为首项,以2为公差的等差数列
(2)由(1)可得an=1+2(n-1)=2n-1
∴bn=
| an |
| 2n |
| 2n-1 |
| 2n |
Tn=
| 1 |
| 2 |
| 3 |
| 22 |
| 2n-1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2 1+n |
①-②得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 2n-1 |
| 2n+1 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
∴Tn=3-
| 2n+3 |
| 2n |
点评:本题重点考查利用递推公式an=
转化数列an+1与an的递推关系、等差数列的证明及错位相减求数列的和,求解的关键是要把握递推公式的转化.
|
练习册系列答案
相关题目