题目内容
已知△ABC中,sin2A=sin2B+sin2C且b•cosB-c•cosC=0,则△ABC为( )
| A.直角三角形 | B.等腰三角形 |
| C.等腰直角三角形 | D.等边三角形 |
由正弦定理化简sin2A=sin2B+sin2C得:a2=b2+c2,
∴△ABC为直角三角形;
又根据正弦定理化简b•cosB-c•cosC=0得:sinBcosB=sinCcosC,
即sin2B=sin2C,又B和C为锐角,
∴B=C或B+C=90°,即△ABC为等腰三角形或直角三角形,
综上,△ABC为直角三角形.
故选A
∴△ABC为直角三角形;
又根据正弦定理化简b•cosB-c•cosC=0得:sinBcosB=sinCcosC,
即sin2B=sin2C,又B和C为锐角,
∴B=C或B+C=90°,即△ABC为等腰三角形或直角三角形,
综上,△ABC为直角三角形.
故选A
练习册系列答案
相关题目
定义平面向量的正弦积为
•
=|
||
|sin2θ,(其中θ为
、
的夹角),已知△ABC中,
•
=
•
,则此三角形一定是( )
| a |
| b |
| a |
| b |
| a |
| b |
| AB |
| BC |
| BC |
| CA |
| A、等腰三角形 |
| B、直角三角形 |
| C、锐角三角形 |
| D、钝角三角形 |