题目内容
某汽车销售公司在A,B两地销售同一种品牌车,在A地的销售利润(单位:万元)是
,在B地的销售利润(单位:万元)是
,其中x为销售量(单位:辆).若该公司在这两地共销售11辆这种品牌车,则能获得的最大利润是
- A.19.45万元
- B.22.45万元
- C.25.45万元
- D.28.45万元
A
分析:设公司在A地销售品牌车x辆,则在B地销售品牌车(11-x)辆,根据利润函数表示出利润,利用基本不等式求出函数的最值.
解答:设公司在A地销售品牌车x辆,则在B地销售品牌车(11-x)辆,
根据题意得,利润y=
=22.45-
)≤19.45
当且仅当x=6时,获得的最大利润是19.45万元
故选A.
点评:本题考查函数模型的构建,考查基本不等式求函数的最值,属于中档题.
分析:设公司在A地销售品牌车x辆,则在B地销售品牌车(11-x)辆,根据利润函数表示出利润,利用基本不等式求出函数的最值.
解答:设公司在A地销售品牌车x辆,则在B地销售品牌车(11-x)辆,
根据题意得,利润y=
当且仅当x=6时,获得的最大利润是19.45万元
故选A.
点评:本题考查函数模型的构建,考查基本不等式求函数的最值,属于中档题.
练习册系列答案
相关题目