题目内容
| OA |
| OB |
| OA |
| OB |
| π |
| 6 |
| OP |
| OA |
| OB |
分析:由题意可得sin∠AOP=
,求出|
|=2,把
=t
+
平方可得t2=
,再由t>0求出t的值.
|
| ||
|
|
| OP |
| OP |
| OA |
| OB |
| 1 |
| 3 |
解答:解:由题意可得sin∠AOP=sin
=
=
=
,∴|
|=2.
再由
=t
+
可得
2=t2
2+2t•
•
+
2.
∵
•
=0,∴4=9t2+0+1.
∴t2=
.
由题意可得t>0,故t=
,
故选B.
| π |
| 6 |
|
| ||
|
|
| 1 | ||
|
|
| 1 |
| 2 |
| OP |
再由
| OP |
| OA |
| OB |
| OP |
| OA |
| OA |
| OB |
| OB |
∵
| OA |
| OB |
∴t2=
| 1 |
| 3 |
由题意可得t>0,故t=
| ||
| 3 |
故选B.
点评:本题主要考查平面向量基本定理及其几何意义,求出|
|=2,是解题的突破口,属于中档题.
| OP |
练习册系列答案
相关题目