题目内容

正方体ABCD―A1B1C1D1的棱长为a,E是棱AB的中点,F是棱CD的中点.

(1)直线B1F是否平行于平面D1DE?

(2)求二面角C1―BD1―B1的大小;

(3)若点P是棱AB上的一个动点,求四面体DPA1C1体积的最大值.

(Ⅰ)B1F∥平面D1DE (Ⅱ)60°(Ⅲ)


解析:

(Ⅰ)证明:取棱A1B1的中点E1,连结E1D.∵B1E1∥DF且相等 

∴四边形DFB1E1为平行四边形  ∴B1F∥DE1.

又∵B1F平面D1DE,易得DE1平面D1DE,∴B1F∥平面D1DE.

(Ⅱ)取A1C1与B1D1的交点O1,在平面BB1D1D上作O1H⊥BD1,

重足为H,连结HC1.∵C1O1⊥B1D1,平面BB1D1D⊥平面A1B1C1D1,

∴C1O1⊥平面BB1D1D,∴C1H⊥BD1

即∠O1HC1是所求二面角的平面角,

∠O1HC1=60°所以二面角C1-BD1-B1的大小是60°

(Ⅲ)延长BA到M,使AM=AB连结MD,则∵AB∥DC且相等,

∴AM∥DC且相等   ∴四边形MACD是平行四边形.∴MD∥AC且相等,

又四边形A1ACC1是平行四边形   ∴AC∥A1C1且相等,∴MD∥A1C1且相等

∴MD与A1C1确定一个平面,即平面DA1C1,∴M是直线BA与平面DA1C1的交点.

∴当动点P与B重合时,P到平面DA1C1的距离最大,四面体DP A1C1体积最大.

此时四面体DP A1C1为正四面体,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网