题目内容
数列{an}的通项公式an=| 2 | ||||
|
分析:将数列的通项分子、分母同乘以
-
,利用裂项的方法求出数列的前99项之和.
| n+1 |
| n |
解答:解:∵an=
=2(
-
)
∴该数列的前99项之和S99=2[(
-1)+(
-
)+…+(
-
)]=2(
-1)=18
故答案为18
| 2 | ||||
|
| n+1 |
| n |
∴该数列的前99项之和S99=2[(
| 2 |
| 3 |
| 2 |
| 100 |
| 99 |
| 100 |
故答案为18
点评:求数列的前n项和,关键是根据数列通项的特点,选择合适的求和方法,首先求出数列的通项.
练习册系列答案
相关题目