题目内容

如图,已知直四棱柱ABCDA1B1C1D1中,底面ABCD是直角梯形,∠DAB

=90°,ABDC,AB=2,AD=DC=1,AA1=2,EBC1的中点.

(1)求证:AB1BC1;

(2)若F是棱DD1上的一点,当的值为多少时,能使二面角F-AC-E为直二面角?请给出证明.

解法一:(1)证明:建立如图所示的空间直角坐标系Axyz,则依题设知

A(0,0,0),B(0,2,0),B1(0,2,),C1(1,1,),                                                       

=(0,2,),=(1,-1,).                                                                ?

·=(0,2,)·(1,-1,)?

=0×1+2×(-1)+ ×=0.                                                                                    ?

AB1BC1.                                                                                                          ?

(2)设F(1,0,A),∵C(1,1,0),E(,,),?

=(1,1,0),=(1,-1,0).?

=(,,)-(1,1,0)=(-,,),?

=(1,1,0)-(1,0,A)=(0,1,-A),?

·=(1,1,0)·(1,-1,0)=0,·=(1,1,0)·(-,,)=0,?

ACBC,ACCE.                                                                                                ?

若使二面角F-AC-E为直二面角,只需ECFC即可,这样面FAC⊥面ACE.?

·=(0,1,-A)·(-,,)=-A,?

·=0时,得A=,即F(1,0,),                                                      ?

故当=1时,二面角F-AC-E为直二面角.                                                           ?

解法二:(1)证明:∵AB=2,AC==,∠CAB=45°,                                 ?

易知∠ABC=45°,∴∠ACB=90°,故AC⊥面CBB1C1.??

又∵AA1=,BC=ABsin45°=,?

故四边形CBB1C1为正方形.连结EB1,则B1CC1B.                                                  ?

由三垂线定理可得,AB1BC1.                                                                                 ?

(2)∵AC⊥面CBB1C1,?

B1CAC.若使二面角F-AC-E为直二面角,只需B1CFC即可,这样面FAC⊥面ACB1.

?

连结A1B,A1C1,ACA1C1,∴A1C1⊥面CBB1C1.由三垂线定理可得,A1BCB1,当F为棱DD1的中点时,易证FCA1B,此时有CB1FC,故当=1时,二面角F-AC-E为直二面角.  

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网