题目内容
(2010•桂林二模)若(1-
)n(n∈N,n>1)的展开式中
的系数为an,
(
+
+…+
) 等于
| 1 | ||
|
| 1 |
| x |
| lim |
| n→∞ |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
2
2
.分析:利用二项展开式的通项可求展开式中
的系数即an,然后利用裂项求和可求
+
+…+
,代入可求极限
| 1 |
| x |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
解答:解:二项展开式的通项为Tr+1=
(-
) r=(-1)r
x-
r
令-
r=-1可得r=2,此时an=
=
∴
+
+…+
=2(
+
+…+
)
=2(1-
+
-
+…+
-
)
=2(1-
)=
∴
(a1+a2+…+an)=
=
(2-
)=2
故答案为:2
| C | r n |
| 1 | ||
|
| C | r n |
| 1 |
| 2 |
令-
| 1 |
| 2 |
| C | 2 n |
| n(n-1) |
| 2 |
∴
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n-1) |
=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=2(1-
| 1 |
| n |
| 2(n-1) |
| n |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 2(n-1) |
| n |
| lim |
| n→∞ |
| 2 |
| n |
故答案为:2
点评:本题主要考查了二项展开式的通项的应用,数列求和的裂项方法的应用及数列的极限的求解,属于二项式与数列知识的综合应用.
练习册系列答案
相关题目