题目内容
直三棱柱ABC-A1B1C1中,BC1⊥AB1,BC1⊥A1C,求证:AB1=A1C.分析:由于BC1⊥AB1,BC1⊥A1C,可以利用向量的数量积,推出(D为BC的中点) 2
•
=0,BC⊥AD,容易得到AB=AC.又由于A1A=B1B,所以A1C=AB1.
| BC |
| AD |
解答:证明:∵
=
+
,
=
+
,
•
=(
+
)•(
+
)=
•
-
=0,
∴
=
•
同理
=
+
,
=
+
•
=
•
+
=0,
∵
+
=
∴
•
+
•
=0.
=
∴
•(
+
)=0;
设D为BC的中点,则
+
=2
∴2
•
=0,∴BC⊥AD
∴AB=AC.又A1A=B1B,∴A1C=AB1.
| A1C |
| A1C1 |
| C1C |
| BC1 |
| BC |
| CC1 |
| A1C |
| BC1 |
| A1C1 |
| C1C |
| BC |
| CC1 |
| A1C1 |
| BC |
| C1C2 |
∴
| C1C2 |
| A1C1 |
| BC |
同理
| AB1 |
| AB |
| BB1 |
| BC1 |
| BB1 |
| B1C1 |
| AB1 |
| BC1 |
| AB |
| BC |
|
∵
| BB1 |
| B1C1 |
| BC1 |
∴
| AB |
| BC |
| A1C1 |
| BC |
| A1C1 |
| AC |
∴
| BC |
| AB |
| AC |
设D为BC的中点,则
| AB |
| AC |
| AD |
∴2
| BC |
| AD |
∴AB=AC.又A1A=B1B,∴A1C=AB1.
点评:本题考查棱柱的结构特征,向量的数量积等知识,是中档题.
练习册系列答案
相关题目