题目内容

(2013•天津一模)已知等差数列{an}中a1=1,公差d>0,前n项和为Sn,且S1,S3-S2,S5-S3成等比数列.
(I)求数列{an}的通项公式an及Sn
(Ⅱ)设bn=
1Sn
(n∈N•)
,证明:b1+b2+…+bn<2.
分析:(I)利用等差数列的通项公式即可得到S1=a1=1,S3-S2=a3=1+2d,S5-S3=a4+a5=2+7d,再利用等比数列的定义及S1,S3-S2,S5-S3成等比数列,可得(1+2d)2=1×(2+7d),解出d,再利用等差数列的通项公式及其前n项和公式即可得出;
(II)利用(I)的结论和裂项求和即可证明.
解答:(Ⅰ)解:由题意S1=a1=1,S3-S2=a3=1+2d,S5-S3=a4+a5=2+7d,
∵S1,S3-S2,S5-S3成等比数列,
∴(1+2d)2=1×(2+7d),
解得d=-
1
4
(舍去)或d=1
∴an=n,
Sn=
n(n+1)
2

(Ⅱ)证明:由(Ⅰ)得bn=
1
Sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

∴b1+b2+…+bn=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=2(1-
1
n+1
)
<2
即b1+b2+…+bn<2.
点评:熟练掌握等差数列、等比数列的通项公式及其前n项和公式、裂项求和是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网