题目内容
数列{an},{bn}满足anbn=1,an=(n+1)(n+2),则{bn}的前10项之和为 ( )
分析:由anbn=1,an=(n+1)(n+2),知bn=
=
-
,再由裂项求和法能求出{bn}的前10项之和.
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
解答:解:∵anbn=1,an=(n+1)(n+2),
∴bn=
=
-
,
∴{bn}的前10项之和S10=(
-
)+(
-
)+(
-
)+…+(
-
)
=
-
=
.
故选D.
∴bn=
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴{bn}的前10项之和S10=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 11 |
| 1 |
| 12 |
=
| 1 |
| 2 |
| 1 |
| 12 |
=
| 5 |
| 12 |
故选D.
点评:本题考查数列求和的应用,是基础题.解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目