题目内容

已知正方体ABCD-A1B1C1D1的棱长是
3
,在正方体表面上到点A的距离为2的点的轨迹形成的所有曲线的总长度是(  )
分析:本题首先要弄清楚曲线的形状,再根据曲线的性质及解析几何知识即可求出长度.
解答:解:由题意,此问题的实质是以A为球心、2为半径的球在正方体ABCD-A1B1C1D1各个面上交线的长度计算,
正方体的各个面根据与球心位置关系分成两类:ABCD、AA1DD1、AA1BB1为过球心的截面,截痕为大圆弧,各弧圆心角为
π
6

A1B1C1D1、B1BCC1、D1DCC1为与球心距离为1的截面,截痕为小圆弧,
由于截面圆半径为r=1,故各段弧圆心角为
π
2

∴这条曲线长度为3•
π
6
•2+3•
π
2
•1=
5
2
π

故选C.
点评:本题以正方体为载体,考查轨迹,考查曲线的周长,有一定的难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网