题目内容
已知f(x)是定义在R上的不恒为零的函数,且对任意a,b∈R满足下列关系式:f(a•b)=af(b)+bf(a),f(2)=2,an=
(n∈N*),bn=
(n∈N*).考察下列结论:①f(0)=f(1); ②f(x)为偶函数;③数列{an}为等差数列;④数列{bn}为等比数列.其中正确的结论有( )
| f(2n) |
| 2n |
| f(2n) |
| n |
| A.1个 | B.2个 | C.3个 | D.4个 |
∵f(0)=f(0•0)=0,f(1)=f(1•1)=2f(1),∴f(1)=0,①正确;
f(1)=f[(-1)•(-1)]=-2f(-1),
∴f(-1)=0,f(-2)=f(-1×2)=-f(2)+2f(-1)=-2≠f(2),
故f(x)不是偶函数,
故②错;
则f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)=2f(2n-1)+2n,
∴bn=bn-1+1,∴{bn}是等差数列,④正确;
b1═1,bn=1+(n-1)×1=n,f(2n)=2nbn=n2n,an═2n,
故数列{an}是等比数列,③正确.
故选C.
f(1)=f[(-1)•(-1)]=-2f(-1),
∴f(-1)=0,f(-2)=f(-1×2)=-f(2)+2f(-1)=-2≠f(2),
故f(x)不是偶函数,
故②错;
则f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)=2f(2n-1)+2n,
∴bn=bn-1+1,∴{bn}是等差数列,④正确;
b1═1,bn=1+(n-1)×1=n,f(2n)=2nbn=n2n,an═2n,
故数列{an}是等比数列,③正确.
故选C.
练习册系列答案
相关题目