题目内容

已知f(x)为R上的偶函数,对任意x∈R都有f(x+6)=f(x)+f(3)且当x1,x2∈[0,3],x1≠x2时,有
f(x1)-f(x2)x1-x2
>0成立,给出四个命题:
①f(3)=0; ②直线x=-6是函数y=f(x)的图象的一条对称轴;
③函数y=f(x)在[-9,-6]上为增函数;   ④函数y=f(x)在[-9,9]上有四个零点.
其中所有正确命题的序号为
①②④
①②④
分析:①令x=-3,代入f(x+6)=f(x)+f(3),根据函数为偶函数,得到f(3)=0;
②将f(3)=0代入,得到f(-x-6)=f(x),确定x=-6是函数y=f(x)的图象的一条对称轴;
③根据偶函数f(x)在[0,3]上为增函数,且周期为6得到函数y=f(x)在[-9,-6]上为减函数;
④根据f(3)=0,周期为6,得到f(-9)=f(-3)=f(3)=f(9)=0,有四个零点.
解答:解:①令x=-3,则由f(x+6)=f(x)+f(3)得f(3)=f(-3)+f(3)=2f(3),故f(3)=0.①正确;
②由f(3)=0,f(x)为偶函数得:f(-6-x)=f(x),故直线x=-6是函数y=f(x)的图象的一条对称轴,②正确;
③因为当x1,x2∈[0,3],x1≠x2时,有
f(x1)-f(x2)
x1-x2
>0成立,故f(x)在[0,3]上为增函数,又f(x)为偶函数,故在[-3,0]上为减函数,又周期为6.故在[-9,-6]上为减函数,③错误;
④函数f(x)周期为6,故f(-9)=f(-3)=f(3)=f(9)=0,故y=f(x)在[-9,9]上有四个零点,④正确.
故答案为:①②④.
点评:本题考查了抽象函数的单调性,奇偶性,周期性,综合性比较强,需熟练灵活掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网