题目内容

已知函数f(x)=(2-a)(x-1)-2lnx,,其中a∈R,

(1)求f(x)的单调区间;

(2)若函数f(x)在(0,)上无零点,求a的取值范围.

 (1)当a=2时,f(x)=-lnx,故函数f(x)递减区间为(0,);

当a2时,

若a>2,当x>0时,都有,所以函数f(x)递减区间为(0,);

若a<2,当x变化时,的变化情况如下表:

 x

0

+

f(x)

  

   极小值

     

故函数f(x)递减区间为:

故函数f(x)递增区间为:

(2)因为f(x)<0在区间上恒成立不可能,故要使函数f(x) 在区间上无零点,只要对任意的x,f(x)>0恒成立即可,

即对x,a>恒成立. Ks5u

再令

故h(x)在上为减函数,于是h(x)>h,

从而,于是g(x)在上为增函数,

所以g(x)<, Ks5u

故要使函数f(x)在上无零点,a的取值范围为:.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网