题目内容
已知函数f(x)=(1+cotx)sin2x+msin(x+
)sin(x-
).
(1)当m=0时,求f(x)在区间[
,
]上的取值范围;
(2)当tana=2时,f(a)=
,求m的值.
| π |
| 4 |
| π |
| 4 |
(1)当m=0时,求f(x)在区间[
| π |
| 8 |
| 3π |
| 4 |
(2)当tana=2时,f(a)=
| 3 |
| 5 |
(1)当m=0时,f(x)=(1+
)sin2x=sin2x+sinxcosx=
=
[
sin(2x-
)+1],
由已知x∈[
,
],得2x-
∈[-
,1],从而得:f(x)的值域为[0,
].
(2)因为f(x)=(1+
)sin2x+msin(x+
)sin(x-
)
=sin2x+sinxcosx+
=
+
-
=
[sin2x-(1+m)cos2x]+
所以f(α)=
[sin2α-(1+m)cos2α]+
=
①
当tanα=2,得:sin2a=
=
=
,cos2a=-
,
代入①式,解得m=-2.
| cosx |
| sinx |
| 1-cos2x+sin2x |
| 2 |
| 1 |
| 2 |
| 2 |
| π |
| 4 |
由已知x∈[
| π |
| 8 |
| 3π |
| 4 |
| π |
| 4 |
| ||
| 2 |
1+
| ||
| 2 |
(2)因为f(x)=(1+
| cosx |
| sinx |
| π |
| 4 |
| π |
| 4 |
=sin2x+sinxcosx+
m(cos
| ||
| 2 |
=
| 1-cos2x |
| 2 |
| sin2x |
| 2 |
| mcos2x |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
所以f(α)=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 5 |
当tanα=2,得:sin2a=
| 2sinacosa |
| sin2a+cos2a |
| 2tana |
| 1+tan2a |
| 4 |
| 5 |
| 3 |
| 5 |
代入①式,解得m=-2.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|