题目内容
(2004•黄冈模拟)已知
,
分别是x轴,y轴方向上的单位向量,
=
,
=10
,且
=3
(n=2,3,4,…),在射线y=x(x≥0)上从下到上依次有点Bi=(i=1,2,3,…),
=3
+3
且|
|=2
(n=2,3,4…).
(Ⅰ)求
;
(Ⅱ)求
,
;
(III)求四边形AnAn+1Bn+1Bn面积的最大值.
| i |
| j |
| OA1 |
| j |
| OA2 |
| j |
| An-1An |
| AnAn+1 |
| OB1 |
| i |
| j |
| Bn-1Bn |
| 2 |
(Ⅰ)求
| A4A5 |
(Ⅱ)求
| OAn |
| OBn |
(III)求四边形AnAn+1Bn+1Bn面积的最大值.
分析:(1)由题意|An-1An|=3|AnAn+1|是一个等比关系,故根据等比数列公式求其通项,从而求得结果;
(2)由题意(1)中数列的前n项和即为An的纵坐标,再由在射线y=x(x≥0)上依次有点B1,B2,…,Bn,…即可得出Bn的坐标;
(3)根据四边形AnAn+1Bn+1Bn的几何特征,把四边形的面积分成两个三角形的面积来求,求出面积的表达式,再作差Sn-Sn-1,确定其单调性,然后求出最大值.
(2)由题意(1)中数列的前n项和即为An的纵坐标,再由在射线y=x(x≥0)上依次有点B1,B2,…,Bn,…即可得出Bn的坐标;
(3)根据四边形AnAn+1Bn+1Bn的几何特征,把四边形的面积分成两个三角形的面积来求,求出面积的表达式,再作差Sn-Sn-1,确定其单调性,然后求出最大值.
解答:解:(Ⅰ)∵
=3
⇒
=
,
∴
=
=(
)2
=(
)3
=
(
-
)=
.(3分)
(II)由(1)知
=
=
,
=
+9
+3
+…+
=
+
=
.(6分)
∵|
|=2
且Bn-1,Bn均在射线y=x(x≥0)上,
∴
=2
+2
.∴
=
+
+
+…+
=3i+3
+(n-1)(2
+2
)
(III)∵|
|=
,△AnAn+1Bn+1的底面边AnAn+1的高为h1=2n+3.
又|
|=2
,An(0,
)到直线y=x的距离为h2=
.
∴Sn=
•(2n+3)•
+
•2
•
=
+
,(10分)
而Sn-Sn-1=
-
=
<0,
∴S1>S2>…>Sn>…
∴Smax=S1=
+
=
+9=
.
(12分)
| An-1An |
| AnAn+1 |
| AnAn+1 |
| 1 |
| 3 |
| An-1An |
∴
| A4A5 |
| 1 |
| 3 |
| A3A4 |
| 1 |
| 3 |
| A2A3 |
| 1 |
| 3 |
| A1A2 |
| 1 |
| 27 |
| OA2 |
| OA1 |
| 1 |
| 3 |
| J |
(II)由(1)知
| AnAn+1 |
| 1 |
| 3n-1 |
| A1A2 |
| 1 |
| 3n-3 |
| j |
|
=
| j |
| j |
| j |
| 1 |
| 3n-3 |
| j |
| j |
9[1-(
| ||
1-
|
| j |
29-(
| ||
| 2 |
| j |
∵|
| Bn-1Bn |
| 2 |
∴
| Bn-1Bn |
| i |
| j |
| OBn |
| OB1 |
| B1B2 |
| B2B3 |
| Bn-1Bn |
| j |
| i |
| j |
(III)∵|
| AnAn+1 |
| 1 |
| 3n-3 |
又|
| BnBn+1 |
| 2 |
29-(
| ||
| 2 |
29-(
| ||
2
|
∴Sn=
| 1 |
| 2 |
| 1 |
| 3n-3 |
| 1 |
| 2 |
| 2 |
29-(
| ||
2
|
| 29 |
| 2 |
| n |
| 3n-3 |
而Sn-Sn-1=
| n |
| 3n-3 |
| n-1 |
| 3n-4 |
| -2n+3 |
| 3n-3 |
∴S1>S2>…>Sn>…
∴Smax=S1=
| 29 |
| 2 |
| 1 |
| 3-2 |
| 29 |
| 2 |
| 47 |
| 2 |
点评:本题是一个数列应用题,也是等差等比数列的一个综合题,本题有着一个几何背景,需要做正确的转化和归纳,才能探究出正确的解决方法.本题是个难题,比较抽象.
练习册系列答案
相关题目