题目内容
| π |
| 2 |
| π |
| 2 |
| 3π |
| 8 |
| 7π |
| 8 |
(1)求函数f(x)的解析式并写出函数的单调增区间;
(2)若f(α)=
| 6 |
| 5 |
| π |
| 8 |
| 3π |
| 8 |
| π |
| 8 |
分析:(1)结合函数的图象,求出A,T,然后求出ω,根据极值点求出φ,确定函数f(x)的解析式,利用正弦函数的单调增区间求出函数的单调增区间;
(2)利用f(α)=
且
<α<
,求出sin(2α-
)=
和cos(2α-
),化简f(α+
),然后求出它的值.
法二:利用f(α)=
且
<α<
,求出2sin2α=
,然后化简f(α+
),求出f(α+
)的值.
法三:由sin(2α-
)=
得sin2α-cos2α=
,求出cos4α,再求出2sin2α=
,然后化简f(α+
),求出f(α+
)的值.
(2)利用f(α)=
| 6 |
| 5 |
| π |
| 8 |
| 3π |
| 8 |
| π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| π |
| 8 |
法二:利用f(α)=
| 6 |
| 5 |
| π |
| 8 |
| 3π |
| 8 |
7
| ||
| 5 |
| π |
| 8 |
| π |
| 8 |
法三:由sin(2α-
| π |
| 4 |
| 3 |
| 5 |
3
| ||
| 5 |
7
| ||
| 5 |
| π |
| 8 |
| π |
| 8 |
解答:解:(1)由题意,
=
-
=
,∴T=π,
又ω>0,故ω=2,∴f(x)=2sin(2x+φ),(2分)
由f(
)=2sin(
+φ)=2,解得φ=2kπ-
(k∈Z),
又-
<φ<
,∴φ=-
,∴f(x)=2sin(2x-
).(5分)
由2kπ-
≤2x-
≤2kπ+
(k∈Z)知,kπ-
≤x≤kπ+
(k∈Z)
∴函数f(x)的单调增区间为[kπ-
,kπ+
](k∈Z).(7分)
(2)解法1:依题意得:2sin(2α-
)=
,即sin(2α-
)=
,(8分)
∵
<α<
,∴0<2α-
<
,
∴cos(2α-
)=
=
=
,(10分)
f(
+α)=2sin[(2α-
)+
]
∵sin[(2α-
)+
]=sin(2α-
)cos
+cos(2α-
)sin
=
(
+
)=
f(
+α)=
.(14分)
解法2:依题意得:sin(2α-
)=
,sin2α-cos2α=
得,①(9分)
∵
<α<
,∴0<2α-
<
,
∴cos(α-
)=
=
=
,(11分)
由cos(2α-
)=
得sin2α+cos2α=
②
①+②得2sin2α=
,
∴f(
+α)=
(14分)
解法3:由sin(2α-
)=
得sin2α-cos2α=
,(9分)
两边平方得1-sin4α=
,sin4α=
,
∵
<α<
∴
<4α<
,
∴cos4α=-
=-
,(11分)
∴sin22α=
=
,
又
<2α<
,∴sin2α=
,
∴f(
+α)=
.(14分)
| T |
| 2 |
| 7π |
| 8 |
| 3π |
| 8 |
| π |
| 2 |
又ω>0,故ω=2,∴f(x)=2sin(2x+φ),(2分)
由f(
| 3π |
| 8 |
| 3π |
| 4 |
| π |
| 4 |
又-
| π |
| 2 |
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
由2kπ-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 8 |
| 3π |
| 8 |
∴函数f(x)的单调增区间为[kπ-
| π |
| 8 |
| 3π |
| 8 |
(2)解法1:依题意得:2sin(2α-
| π |
| 4 |
| 6 |
| 5 |
| π |
| 4 |
| 3 |
| 5 |
∵
| π |
| 8 |
| 3π |
| 8 |
| π |
| 4 |
| π |
| 2 |
∴cos(2α-
| π |
| 4 |
1-sin2(2α-
|
1-(
|
| 4 |
| 5 |
f(
| π |
| 8 |
| π |
| 4 |
| π |
| 4 |
∵sin[(2α-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
| 3 |
| 5 |
| 4 |
| 5 |
7
| ||
| 10 |
f(
| π |
| 4 |
7
| ||
| 5 |
解法2:依题意得:sin(2α-
| π |
| 4 |
| 3 |
| 5 |
3
| ||
| 5 |
∵
| π |
| 8 |
| 3π |
| 8 |
| π |
| 4 |
| π |
| 2 |
∴cos(α-
| π |
| 4 |
1-sin2(2α-
|
1-(
|
| 4 |
| 5 |
由cos(2α-
| π |
| 4 |
| 4 |
| 5 |
4
| ||
| 5 |
①+②得2sin2α=
7
| ||
| 5 |
∴f(
| π |
| 8 |
7
| ||
| 5 |
解法3:由sin(2α-
| π |
| 4 |
| 3 |
| 5 |
3
| ||
| 5 |
两边平方得1-sin4α=
| 18 |
| 25 |
| 7 |
| 25 |
∵
| π |
| 8 |
| 3π |
| 8 |
| π |
| 2 |
| 3π |
| 2 |
∴cos4α=-
| 1-sin24α |
| 24 |
| 25 |
∴sin22α=
| 1-cos4α |
| 2 |
| 49 |
| 50 |
又
| π |
| 4 |
| 3π |
| 4 |
7
| ||
| 10 |
∴f(
| π |
| 8 |
7
| ||
| 5 |
点评:本题是基础题,由三角函数的图象确定函数的解析式,利用函数的解析式,求已知函数的三角函数值,求相关角的三角函数值,考查公式的灵活运用能力,化简能力,常考题目.
练习册系列答案
相关题目