题目内容
260
260
.种不同的涂色方法.分析:根据题意,先分析于1号区域,有5种颜色可选,即有5种涂法方案,再分①若2、4号区域涂不同的颜色,②若2、4号区域涂相同的颜色,两种情况讨论其他3个区域的涂色方案,由分类计数原理可得其他个区域的涂色方案的数目;再由分步计数原理计算可得答案.
解答:解:对于1号区域,有5种颜色可选,即有5种涂法,
分类讨论其他3个区域:①若2、4号区域涂不同的颜色,则有A42=12种涂法,3号区域有3种涂法,此时其他3个区域有12×3=36种涂法;
②若2、4号区域涂相同的颜色,则有4种涂法,3号区域有4种涂法,此时其他3个区域有有4×4=16种涂法;
则共有5×(36+16)=5×52=260种;
故答案为260.
分类讨论其他3个区域:①若2、4号区域涂不同的颜色,则有A42=12种涂法,3号区域有3种涂法,此时其他3个区域有12×3=36种涂法;
②若2、4号区域涂相同的颜色,则有4种涂法,3号区域有4种涂法,此时其他3个区域有有4×4=16种涂法;
则共有5×(36+16)=5×52=260种;
故答案为260.
点评:本题考查分步计数原理与分类计数原理的综合运用,注意4个区域的位置关系即可.
练习册系列答案
相关题目