题目内容

已知数列{an}满足:an=logn+1(n+2)(n∈N*),定义使a1•a2•a3…ak为整数的数k(k∈N*)叫做企盼数,则区间[1,2011]内所有的企盼数的和为


  1. A.
    1001
  2. B.
    2030
  3. C.
    2026
  4. D.
    2048
C
分析:先利用换底公式与叠乘法把a1•a2•a3…ak化为log2(k+2);然后根据a1•a2•a3…ak为整数,可得k=2n-2;最后由等比数列前n项和公式解决问题.
解答:an=logn+1(n+2)=,(n∈N*),
∴a1•a2•a3…ak==log2(k+2),
又∵a1•a2•a3…ak为整数
∴k+2必须是2的n次幂(n∈N*),即k=2n-2.
∴k∈[1,2011]内所有的幸运数的和
M=(22-2)+(23-2)+(24-2)+…+(210-2)
=-2×9=2026,
故选C.
点评:本题在理解新定义的基础上,考查换底公式、叠乘法及等比数列前n项和公式,其综合性、技巧性是比较强的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网