题目内容
设函数f(x)=axn(1-x)+b(x>0),n为正整数,a,b为常数.曲线y=f(x)在(1,f(1))处的切线方程为x+y=1.(1)求a,b的值;(2)求函数f(x)的最大值.
(1) a=1,b=0. (2)
解析
已知函数f(x)=x3+x-16.求曲线y=f(x)在点(2,-6)处的切线的方程
已知函数f(x)=aln(2x+1)+bx+1.(1)若函数y=f(x)在x=1处取得极值,且曲线y=f(x)在点(0,f(0))处的切线与直线2x+y-3=0平行,求a的值;(2)若b=,试讨论函数y=f(x)的单调性.
已知函数f(x)=-x3+x2-2x(a∈R).(1)当a=3时,求函数f(x)的单调区间;(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围;(3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.
已知函数f(x)=ax3-x2+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.(1)求a,c,d的值;(2)若h(x)=x2-bx+-,解不等式f′(x)+h(x)<0.
已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.
已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围.
已知函数f(x)=ax+ln x,g(x)=ex.(1)当a≤0时,求f(x)的单调区间;(2)若不等式g(x)< 有解,求实数m的取值范围.
已知函数.(Ⅰ)设,求的最小值;(Ⅱ)如何上下平移的图象,使得的图象有公共点且在公共点处切线相同.