题目内容
已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足bn=
,其前n项和为Sn.
(1)求数列{an}的通项公式;
(2)若S2为S1,Sm (m∈N*)的等比中项,求正整数m的值.
(3)对任意正整数k,将等差数列{an}中落入区间(2k,22k)内项的个数记为ck,求数列{cn}的前n项
和Tn.
| 1 | anan+1 |
(1)求数列{an}的通项公式;
(2)若S2为S1,Sm (m∈N*)的等比中项,求正整数m的值.
(3)对任意正整数k,将等差数列{an}中落入区间(2k,22k)内项的个数记为ck,求数列{cn}的前n项
和Tn.
分析:(1)依题意,可得到关于首项a1与公差d的方程组,解之即可求得数列{an}的通项公式;
(2)由bn=
知,利用裂项法可求得bn=
(
-
),继而可得Sn=
,于是由S2为S1,Sm (m∈N*)的等比中项,即可求得正整数m的值;
(3)依题意知,ck=22k-1-2k-1,利用分组求和即可求得数列{cn}的前n项.
(2)由bn=
| 1 |
| an•an+1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
(3)依题意知,ck=22k-1-2k-1,利用分组求和即可求得数列{cn}的前n项.
解答:解:(1)由题意,得
解得
<d<
.
又d∈Z,
∴d=2.
∴an=1+(n-1)•2=2n-1.
(2)∵bn=
=
=
(
-
),
∴Sn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
,
∵S1=
,S2=
,Sm=
,S2为S1,Sm(m∈N*)的等比中项,
∴
=SmS1,
即(
)2=
•
,
解得m=12.
(3)对任意正整数k,2k<2n-1<22k,则2k-1+
<n<22k-1+
,
而k∈N*,由题意可知ck=22k-1-2k-1,
于是Tn=c1+c2+…+cn=(21+23+…+22n-1)-(20+21+…+2n-1)
=
-
=
-(2n-1)
=
,
即Tn=
.
|
| 3 |
| 2 |
| 5 |
| 2 |
又d∈Z,
∴d=2.
∴an=1+(n-1)•2=2n-1.
(2)∵bn=
| 1 |
| an•an+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
∵S1=
| 1 |
| 3 |
| 2 |
| 5 |
| m |
| 2m+1 |
∴
| S | 2 2 |
即(
| 2 |
| 5 |
| 1 |
| 3 |
| m |
| 2m+1 |
解得m=12.
(3)对任意正整数k,2k<2n-1<22k,则2k-1+
| 1 |
| 2 |
| 1 |
| 2 |
而k∈N*,由题意可知ck=22k-1-2k-1,
于是Tn=c1+c2+…+cn=(21+23+…+22n-1)-(20+21+…+2n-1)
=
| 2-22n+1 |
| 1-22 |
| 1-2n |
| 1-2 |
=
| 22n+1-2 |
| 3 |
=
| 22n+1-3•2n+1 |
| 3 |
即Tn=
| 22n+1-3•2n+1 |
| 3 |
点评:本题考查数列的求和,着重考查等差数列的通项公式的应用,考查裂项法与分组求和的综合应用,属于难题.
练习册系列答案
相关题目